Mathematics of the Neural Response
نویسندگان
چکیده
We propose a natural image representation, the neural response, motivated by the neuroscience of the visual cortex. The inner product defined by the neural response leads to a similarity measure between functions which we call the derived kernel. Based on a hierarchical architecture, we give a recursive definition of the neural response and associated derived kernel. The derived kernel can be used in a variety of application domains such as classification of images, strings of text and genomics data. Communicated by Felipe Cucker. S. Smale Toyota Technological Institute at Chicago and University of California, Berkeley, CA, USA e-mail: [email protected] L. Rosasco CBCL, McGovern Institute, MIT & DISI, Università di Genova, Cambridge, MA, USA e-mail: [email protected] J. Bouvrie ( ) CBCL, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA e-mail: [email protected] A. Caponnetto Department of Mathematics, City University of Hong Kong, Hong Kong, China e-mail: [email protected] T. Poggio CBCL, McGovern Institute, CSAIL, BCS, Massachusetts Institute of Technology, Cambridge, MA, USA e-mail: [email protected]
منابع مشابه
FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملNumerical solution of hybrid fuzzy differential equations by fuzzy neural network
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...
متن کاملA Neural Network Model to Solve DEA Problems
The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We believe that solving for the DEA efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. In this paper, a new neural network model is used to estimate the inefficiency of DMUs in large datasets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Foundations of Computational Mathematics
دوره 10 شماره
صفحات -
تاریخ انتشار 2010